Home
Class 12
MATHS
If Sigma(r=1)^(n) Tr=n/8(n+1)(n+2)(n+3) ...

If `Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3)` then find `Sigma_(r=1)^(n) 1/T_r`

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+3))/(2(n+1)(n+2))`

`T_(n)=sum_(r=1)^(n)T_(r)-sum_(r=1)^(n-1)T_(r)`
`=(n(n+1)(n+2)(n+3))/8-((n-1)n(n+1)(n+2))/8`
`=(n(n+1)(n+2))/2`
`therefore1/(T_(r))=2/(r(r+1)(r+2))=(r+2-r)/(r(r+1)r+2))`
`=1/(r(r+1))-1/((r+1)(r+2)`
`=V(r )-V(r+1)`
`thereforesum_(r=1)^(n)1/(T^(r))=sum_(r=1)^(n)(V(r )-V(r+1))`
`=V(1)-V(n+1)`
`=1/2-1/((n+1)(n+2))`
`=(n(n+3))/(2(n+1)(n+2))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^nT_r =n/8(n+1)(n+2)(n+3) then find sum_(r=1)^n1/T_r

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If sum_(r=1)^n T_r=n(2n^2+9n+13), then find the sum sum_(r=1)^nsqrt(T_r)dot

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (n-r+1)^(n)C_(r-1)=mxx^(n)C_(r) then m=

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

Given a sequence t_1 , t_2 ,..... if its possible to find a function f(r) such that t_r = f(r + 1) - f(r) then sum_(r = 1)^n t_r = f(n + 1) - f(1) Sum of the sum_(r = 1)^n r(r + 3)(r + 6) is