Home
Class 12
MATHS
Find the sum Sigma(n=1)^(oo)(3n^2+1)/((n...

Find the sum `Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)`

Text Solution

Verified by Experts

The correct Answer is:
`9/16`

`T_(n)=(3n^(2)+1)/((n^(2)-1)^(3))=1/2(6n^(2)+2)/((n^(2)-1)^(3))`
`=1/2(((n+1)^(3)-(n-1)^(3))/((n+1)^(3)(n-1)^(3)))`
`=1/2(1/((n-1)^(3))-1/(n+1)^(3))`
`thereforeS=1/2[(1/1^(3)-1/3^(3))+(1/2^(3)-1/3^(3))+(1/2^(3)-1/4^(3))+(1/3^(3)-1/5^(3))`
`+(1/4^(3)-1/6^(3))+...]`
`=1/2(1+1/8)=9/16`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum to n terms : (1)/(2) + (3)/(2^(2)) + (5)/(2^(3)) +…+ (2n-1)/(2^(n))

Find the sum sum_(r=1)^n r/((r+1)!) where n!= 1xx2xx3....n .

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

Find the sum up to n terms :n.1+(n-1).2+(n-2)3+(n-3).4+....

Find the value of sum_(p=1)^n(sum_(m=p)^n.^nC_m.^m C_p)dot And hence, find the value of lim_(n->oo)1/(3^n)sum_(p=1)^n(sum_(m=p)^n.^n C_m.^m C_p)dot