Home
Class 12
MATHS
Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2...

Let `S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10`
Then find the value of n.

Text Solution

Verified by Experts

The correct Answer is:
n=24

`T_(r)=(sqrtr)/(1+sqrtr+sqrt(r+1))=(sqrtr{1+sqrtr-sqrt(r+1)})/(1+r+2sqrtr-(r+1))`
`=1/2{1+sqrtr-sqrt(r+1)}`
`thereforeS_(n)=1/2(n+1)-sqrt(n+1)=10`
Let `sqrt(n+1)`=x
`thereforex^(2)-x=20`
`rArrx^(2)-x-20=0`
`rArrx=sqrt(n+1)=5`
`thereforen=24`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

4 cos^(2)x + sqrt(3) = 2(sqrt(3)+1)

int (dx)/(sqrt(1+sqrt(x)))=(4)/(3)(sqrt(x)-2)sqrt(1+sqrt(x))+c

Simplify: (sqrt2 (2 + sqrt3))/(sqrt3 (sqrt3 + 1)) - (sqrt2 (2 - sqrt3))/(sqrt3 (sqrt3 -1))

The sum of the series (1)/(sqrt1+sqrt2)+ (1)/(sqrt2+ sqrt3)+ ...+ (1)/(sqrt(n)+sqrt(n+1)) is equal to-

Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120)) and q=1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(121)) then

int ((log(1+6sqrt(x)))/(3sqrt(x)+sqrt(x))+(1)/(3sqrt(x)+4sqrt(x)))dx

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

Simplify: 1/sqrt(11-2sqrt(30))-3/(sqrt7-2sqrt(10))-4/(sqrt(8+4sqrt3))

lim_(nto oo)(sqrt1+sqrt2+......+sqrt(n-1))/(nsqrtn)=