Home
Class 12
MATHS
If Sigma(r=1)^(n) r^4=I(n), " then "Sigm...

If `Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4` is equal to

A

`I(2n)-I(n)`

B

`I(2n)-16 I(n)`

C

`I(2n)-8I(n)`

D

`I(2n)-4I(n)`

Text Solution

Verified by Experts

The correct Answer is:
B

`I(2n)=1^(4)+2^(4)+3^(4)+…+(2n-1)^(4)+(2n)^(4)`
`=[(1^(4)+3^(4)+5^(4)+..+(2n-1)^(4)]+2^(4)(1^(4)+2^(4)+3^(4)+4^(4)+…n^(4))`
`=sum_(r=1)^(n)(2r-1)^(4)+16xxI(n)`
`rArrsm_(r=1)^(n)(2r-1)^(4)=I(2n)-16I(n)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

Write the series sigma_(r = 1)^(n) (2r-1)/(r^(2)) in expanded form.

Write the series Sigma_(r=1)^(n) (2r+1)/(r^(2) + 1) in expanded form.

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

If (n-r+1)^(n)C_(r-1)=mxx^(n)C_(r) then m=

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

CENGAGE PUBLICATION-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  2. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |