Home
Class 12
MATHS
Let Sn=Sigma(k=1)^(4n) (-1)^((k(k+1))/2...

`Let S_n=Sigma_(k=1)^(4n) (-1)^((k(k+1))/2)k^2`.Then `S_n` can take value (s)

A

1056

B

1088

C

1120

D

1332

Text Solution

Verified by Experts

The correct Answer is:
A, D

`S_(n)=sum_(k=1)^(4n)(-1)^(k(k+1))/2)k^(2)`
`=sum_(r-0)^((n-1))((4r+4)^(2)+(4r+3)^(2)-(4r+2)^(2)-(4r+1)^(2))`
`=sum_(r=0)^((n-1))(2(8r+6)+2(8r+4))`
`=sum_(r=0)^((n-1))(32r+20)`
`=16(n-1)n+20n`
`=4n(4n+1)`
`={{:(1056 " for n ="8),("1332 for n= 9"):}`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES ( JEE ADVANCED )(SINGLE CORRECT ANSWER TYPE )|3 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

sum_(k=1)^ook(1-1/n)^(k-1) =?

If S_(n)=underset(k=1)overset(4n)sum(-1)^((k(k+1))/(2)).k^(2) then the possible values of s_(n) are-

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Let A_(r) be the area of the region bounded between the curves y^(2)=(e^(-kr))x("where "k gt0,r in N)" and the line "y=mx ("where "m ne 0) , k and m are some constants lim_(n to oo)Sigma_(i=1)^(n)A_(i)=(1)/(48(e^(2k)-1)) then the value of m is

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)

If S_(r ) be the sum of the cubes of first r natural numbers, then show that Sigma_(r=1)^(n) (2r+1)/(S_(r)) = (4n(n+2))/((n+1)^(2)) , for any natural number n.

If S_(n) = 1 + (1)/(2) + (1)/(2^(2))+….+(1)/(2^(n-1)) , find the least value of n for which 2- S_(n) lt (1)/(100) .

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer