Home
Class 12
MATHS
Let a1,a2,a3 ...... a11 be real numbers ...

Let a1,a2,a3 ...... a11 be real numbers satisfying `a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2)` for `k=3,4,.....11` If `(a1^2 +a2^2.......a11^2)/11 = 90` then find the value of `(a_1+a_2....+a_11)/11`

Text Solution

Verified by Experts

The correct Answer is:
0

`a_k=2a_(k-1)-a_(k-2)rArr a_1,a_2rArr a_1,a_2,.....a_(11)` are in A.P
`therefore (a_(1)^2+a_(2)^2+….+a_11^2)/(11)=(11a^2+35xx11d^2+110ad)/11=90`
`rArr 225+35d^2+150d^2+150d=90`
`35d^2+150d+135=0 rArr -3,-9//7`
`a_2 lt (27)/(2),` we get d= -3 and `d=-9//7`
`rArr (a_(1)+a_2+....+a_11)/(11)=11/2[30-10xx3]=0`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let a_1,a_2,a_3,.......a_11 be real number satisfying a_1=15,27-2a_2gt0 anda_k=2a_(k-1)-a_(k-2) for k=3,4,.....11. If (a_1^2+a_2^2+......a_11^2)/11=90, then the value of (a_1 +a_2+.....a_11)/11 is equal to

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

Let a_1,a_2 ,a_3 ...... be an A.P. Prove that sum_(n=1)^(2m)(-1)^(n-1)a_n^2=m/(2m-1)(a_1^2-a_(2m)^2) .

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n) , for n=5.

For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a_1y+a_2y^2+... , and a_1=a_2=10 , then

If a_1,a_2,.....a_n are positive real number whose product is a fixed number c, then the minimum value of a_1+a_2+......+a_(n-1)+a_n is

Let a_1, a_2, a_3.......... be in A.P. and h_1,h_2,h_3..... ,in H.P. If a_1=2 = h_1, and a_30=25=h_30 then a_7h_24+ a_14 + a_17=

For natural numbers m, n if (1-y)^m(1+y)^n=1+a_1y+a_2y^2+.... and a_1=a_2=10 then (m, n) is