Home
Class 12
MATHS
Find the value (s) of r satisfying the e...

Find the value (s) of `r` satisfying the equation `^69 C_(3r-1)-^(69)C_(r^2)=^(69)C_(r^2-1)-^(69)C_(3r)dot`

Text Solution

Verified by Experts

`.^(69)C_(3r-1)+ .^(69)C_(r^(2)-1)+ .^(69)C_(r^(2))`
`implies .^(70)C_(3r)= .^(70)C_(r^(2))`
`implies 3r=r^(2) " or" r=0,3`
or `3r+r^(2)-70=0`
or r=7, -10
Hence, possible values of r and 3 and 7 as for these values all the terms in equation are defined.
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of values of r satisfying the equation ,^69C_(3r-1) -^(69)C_(r^2)=^69C_(r^2-1)-^69C_(3r) is

.^(n-1)C_(r)+^(n-1)C_(r-1)=

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

The result of ^(n-1)C_r+^(n-1)C_(r-1)=

Find n and r if .^(n)C_(r):^(n)C_(r+1):^(n)C_(r+2)=1:2:3 .

If (n-r+1)^(n)C_(r-1)=mxx^(n)C_(r) then m=

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .