Home
Class 12
MATHS
Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1...

Prove that: `((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot`

Text Solution

Verified by Experts

`((2n)!)/(n!)=(1xx2xx3xx4xx..xx(2n02)xx(2n-1)2n)/(n!)`
`=({1xx3xx..xx(2n-1)}{2xx4xx..xx(2n)})/(n!)`
`=({1xx3xx..xx(2n-1)}2^(n){1xx2xx..xx(n-1)n})/(n!)`
`=({1xx3xx5xx7xx..xx(2n-1)}2^(n)n!)/(n!)`
`={1xx3xx5xx7xx..xx(2n-1)}2^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

Show that , (2n)! =2^(n).n![1.3.5…(2n-1)].

Prove that [(n+1)//2]^n >(n !)dot

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that n^n > 1, 3, 5,…………(2n - 1) .

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)+.......+(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

Prove that , (x^(n))/(n!)+(x^(n-1).a)/((n-1)!1!)+(x^(n-2).a^(2))/((n-2)!2!)+(x^(n-3).a^(3))/((n-3)!3!)+.......(a^(n))/(n!)=(x+a)^(n)/(n!)

Show that : (^(4n)C_(2n))/(^(2n)C_n) = (1.3.5...(4n-1))/{1.3.5...(2n-1)}^2

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!