Home
Class 12
MATHS
lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2...

`lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=`

A

`log_(e)4`

B

0

C

`log_(e)2`

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(xrarroo)(lim)[x-log_(e)((e^(x)+e^(-x))/(2))]`
`=underset(xrarroo)(lim)[x-log_(e)e^(x)((1+e^(-2x))/(2))]`
`=underset(xrarroo)(lim)[x-x-log_(e)((1+e^(-2x))/(2))]`
`=-log_(e)((1)/(2))=log_(2)2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)[x-log_e((e^x+e^(-x))/2)]= a) (log)_e4 b. 0 c. oo d. (log)_e2

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

Evaluate: lim_(x rarr 0) (sinx)/(log_(e)(1+x)^(1/2))

Evaluate: lim_(x rarr 2) (e^(x)-e^(2))/(x-2)

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

prove that lim_(xrarr0) log_(e)((sinx)/(x))=0

Evaluate: lim_(x rarr 0) ((e^(x)-1)log(1+x))/(sin^(2)x)

Evaluate: lim_(x to 0)(e^(4x)-e^(-x))/(x)

Value of lim_(x rarr 3)(sin(e^(x-3) -1))/log(x-2) is

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2