Home
Class 12
MATHS
If k in I such that lim(nrarroo) (cos.(k...

If `k in I` such that `lim_(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0,` then

A

k must not be divisible by 24

B

k is divisible by 24 or k is divisible neither by 4 nor by 6

C

k must be divisible by 12 but not necessarity by 24

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(nrarroo)(lim)(cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0`
holds good if
`"Case I": cos .(kpi)/(4)=cos.(kpi)/(6)=1`
i.e., `(kpi)/(4)=2mpi and (kpi)/(6)=2p pi,m,p in Z`
i.e., k = 8m and k = 12 p
i.e., k is divisible by both 8 and 12 i.e., k is divisible by 24.
Case II: `-1 lt cos.(kpi)/(4),cos.(kpi)/(6) lt 1`
i.e., k is not divisible by 4 and k is not divisible by 6.
Case III: `cos.(kpi)/(4)=(2m+1)pi and (kpi)/(6)=(2p+1)pi`
`k=4 (2m+1) and k=6(2p+1)`
This is not possible.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .

lim_(nrarroo) [(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)]

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

The value of the limit lim_(nrarroo)((1)/(n+1)+(1)/(n+2)+.......+(1)/(6n)) is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

The value of lim_(nrarrprop) ((n+1)(2n+1))/n^2 is

lim_(nrarroo) [(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

CENGAGE PUBLICATION-LIMITS-Single Correct Answer Type
  1. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  2. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  3. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  4. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2)^(n...

    Text Solution

    |

  5. The value of lim(x rarr 0) ((tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  6. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  7. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  8. underset(xrarr0)(lim)(1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(e^(x...

    Text Solution

    |

  9. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  10. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  11. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  12. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  13. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  14. lim(xrarr(pi)/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  15. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  16. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  17. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  18. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  19. L=underset(nrarroo)(lim)((sqrt(n^(2)+n)-1)/(n))^(2sqrt(n^(2)+n)-1)

    Text Solution

    |

  20. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |