Home
Class 12
MATHS
Let f(x) be defined for all x in R such ...

Let f(x) be defined for all `x in R` such that `lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`. Then f(0) is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xrarr0)(lim)[f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`
`rArr" "underset(xrarr0)(lim)[f(x)+log((e^(f(x))-1)/(e^(f(x))))-log(f(x))]=0`
`rArr" "underset(xrarr0)(lim)[f(x)+log((e^(f(x))-1)/(f(x)))-f(x)]=0`
`rArr" "log(underset(xrarr0)(lim)((e^(f(x))-1)/(f(x))))=0`
`rArr" "underset(xrarr0)(lim)((e^(f(x))-1)/(f(x)))=1`
`rArr" "underset(xrarr0)(lim)f(x)=0`
`rArr" "f(0)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the condition for the existance of lim_(xrarr0)f(x)

If f(x)= (1)/(x+1) - log (1+x), x gt 0 then f(x) is-

If f(x) is differentiable at x=a then show that lim_(xrarr0)(x^2f(a)-a^2f(x))/(x-a)=2af(a)-a^2f^1(a)

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then (a) f(x) is unbounded (b) f(1/x)vec 0 as x vec0 (c) f(x) is bounded (d) f(x)=(log)_e x

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. lim_(xrarr0)[1+f(x)/x^2]=3 ,then f(2) is equal to:

If f(x)=log_ex is defined in [1,e], then

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

If f''(0)=k,kne0 then the value of lim_(xrarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Prove that /_\ log f(x) = log[ 1+ (/_\ f(x))/(f(x) ].

CENGAGE PUBLICATION-LIMITS-Single Correct Answer Type
  1. underset(xrarr0)(lim)(1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(e^(x...

    Text Solution

    |

  2. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  3. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  4. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  5. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  6. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  7. lim(xrarr(pi)/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  8. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  9. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  10. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  11. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  12. L=underset(nrarroo)(lim)((sqrt(n^(2)+n)-1)/(n))^(2sqrt(n^(2)+n)-1)

    Text Solution

    |

  13. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  14. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  15. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  16. The value of underset(xrarr1)(lim)(root(2)x-root4x)/(root3x-root2x) is

    Text Solution

    |

  17. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  18. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  19. underset(xrarr0^(+))(lim)(1)/(xsqrtx)(atan^(-1).(sqrtx)/(a)-b tan^(-1)...

    Text Solution

    |

  20. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |