Home
Class 12
MATHS
The right hand derivative of f(x)=[x]t a...

The right hand derivative of `f(x)=[x]t a npix a tx=7` is (where [.] denotes the greatest integer function) `0` b. `7pi` c. `-7pi` d. none of these

A

0

B

`7pi`

C

`-7pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`f'(7^(+))=underset(hrarr0)(lim)(f(7+h)-f(7))/(h)`
`=underset(hrarr0)(lim)([7+h]tan pi(7+h)-[7]tan 7pi)/(h)`
`=underset(hrarr0)(lim)(7 tan pi(7+h))/(h)`
`=7pi underset(hrarr0)(lim)(tanpi h)/(pih)`
`=7pi`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

The right hand derivative of f(x) = [x] tanpix at x = 7 is (where [.] denotes the greatest integer function)

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

Period of f(x) = sgn([x] +[-x]) is equal to (where [.] denotes greatest integer function

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

Evaluate lim_(x->(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denotes the greatest integer function is:

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.