Home
Class 12
MATHS
If f(x)=log(e)(log(e)x)/log(e)x then f'(...

If `f(x)=log_(e)(log_(e)x)/log_(e)x` then `f'(x)` at x = e is

A

0

B

1

C

e

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x)=(log_(e)(log_(e)x))/(log_(e)x)`
`therefore" "f'(x)=((1)/(log_(e)x)xx(1)/(x)xxlog_(e)(x)-log_(e)(log_(e)(x))xx(1)/(x))/([log_(e)(x)]^(2))`
`therefore" "f'(e)=((1)/(e)-0)/(1)=1//e`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -

If f(x)=log_(5)log_(3)x , then f'(e ) is equal to

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

If log_(e)(x^(2)-16)lelog_(e)(4x-11) ,then-

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x) =log_(e) (x^(2)-4) then find (df) /(dx)

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=log_5log_3 x , then f'(e ) is equal to

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).