Home
Class 12
MATHS
If t(1+x^2)=x and x^2+t^2=y, then at x=2...

If `t(1+x^2)=x and x^2+t^2=y,` then at `x=2` the value of `(d y)/(d x)` is equal to

A

`(24)/(5)`

B

`(101)/(125)`

C

`(488)/(125)`

D

`(358)/(125)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(dy)/(dx)=2x+st.(dt)/(dx)`
Also, `t=(x)/(1+x^(2))`
`therefore" "(dt)/(dx)=(1-x^(2))/((1+x^(2))^(2))`
Now putting x = 2, we get
`(dt)/(dx)=(-3)/(25)`
`therefore" "(dy)/(dx)=2(2)+2((2)/(5)).(-3)/(25)=4-(12)/(125)=(488)/(125)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If t(1+x^(2))=x and x^(2)+t^(2)=y then at x = 2, the value of (dy)/(dx) is

If x+y=e^(x-y) then the value of (d^(2)y)/(dx^(2)) is -

If f(x) = (a^x + a^-x)/2, (a gt 2) then the value of f(x + y)+f(x - y) is equal to

If y=a^(x)b^(2x-1) , then the value of (d^(2)y)/(dx^(2)) is -

If y=sinx+e^(x) , then the value of (d^(2)x)/(dy^(2)) is -

If y=(1)/(1+x+x^(2)+x^(3)) , then the value of (d^(2)y)/(dx^(2)) at x=0 is -

Let x=f(t) and y=g(t), where x and y are twice differentiable function. If f'(0)= g'(0) =f''(0) = 2. g''(0) = 6, then the value of ((d^(2)y)/(dx^(2)))_(t=0) is equal to

IF y=cos^2x then the value of [(d^2y)/(dx^2)]_(x=pi/4) is-

If x=acos2t, y=asin2t, find the value of (d^2y)/(dx^2) in terms of t.

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is