Home
Class 12
MATHS
If y = tan^(-1)(u/sqrt(1-u^2)) and x = ...

If `y = tan^(-1)(u/sqrt(1-u^2))` and `x = sec^(-1)(1/(2u^2-1))`, ` u in (0,1/sqrt2)uu(1/sqrt2,1)`, prove that `2dy/dx+ 1 = 0`.

A

y

B

xy

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

`y=tan^(-1).(u)/(sqrt(1-u^(2)))`
`rArr" "y=sin^(-1)u`
Also, `x=sec^(-1).(1)/(2u^(2)-1)`
`rArr" "x=cos^(-1)(2u^(2)-1)`
`y=sin^(-1)u`
`therefore" "(dy)/(dx)=(1)/(sqrt(1-u^(2)))`
`=cos^(-1)(2u^(2)-1)`
Also, `(dx)/(du)=(-1)/(sqrt(1-(2u^(2)-1)^(2)))(4u)`
`=-(4u)/(sqrt(1-4u^(4)-1+4u^(2)))`
`-(4u)/(sqrt(4u^(2)(1-u^(2))))=-(2)/(sqrt(1-u^(2)))`
`therefore" "(dy)/(dx)=-(1)/(2)`
`rArr" "2((dy)/(dx))+1=0`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=sin^(-1)(sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=tan^-1((sqrt(1+x^2)-1)/x) , then dy/dx at x = 0 is

If y=sqrt((1-x)/(1+x)) ,prove that (1-x^2)dy/dx+y=0

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Prove that tan^(-1)((1)/(sqrt(x^(2) -1))) = (pi)/(2) - sec^(-1) x, x gt 1

If y=sqrt((1-x)/(1+x)) , prove that , (1-x^(2)) (dy)/(dx)+y=0