Home
Class 12
MATHS
If y=x^((log x)^(log(log,x)))," then "(d...

If `y=x^((log x)^(log(log,x)))," then "(dy)/(dx) is`

A

`(y)/(x)(lnx^(logx-1))+2lnxln(lnx)`

B

`(y)/(x)(logx)^(log(logx))(2log(logx)+1)`

C

`[(lnx)^(2)+2ln(lnx)]`

D

`(y)/(x)(logy)/(logx)(2log(logx)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`y=x^((logx)^(log(logx)))`
`rArr" "logy=(logx)(logx)^(log(logx))" (1)"`
Taking log on both sides, we get
`log(logy)=log(logx)+log(logx)log(logx)`
Differentiating w.r.t., we get
`(1)/(logy).(1)/(y)(dy)/(dx)=(1)/(xlogx)+(2log(logx))/(logx)(1)/(x)`
`=(2log(logx)+1)/(xlogx)`
`rArr" "(dy)/(dx)=(y)/(x).(logy)/(logx)(2log(logx)+1)`
Substituting the value of log y from (1), we get
`(dy)/(dx)=(y)/(x)(logx)^(log(logx))(2log(logx)+1)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=log_(10)x , then (dy)/(dx) is equal to -

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y = log_10x , then (dy)/(dx) is equal to

int (dx)/(x log x[log (log x)])

If y=log_(a)x+log_(x)a+log_(x)x+log_(a)a , then the value of (dy)/(dx) is -

If y=log(1+x^2) , then find dy/dx

int (dx)/(x log (x))

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))