Home
Class 12
MATHS
The second derivative of a single valued...

The second derivative of a single valued function parametrically represented by `x=phi(t) and y=psi(t)` (where `phi(t) and psi(t)` are different function and `phi'(t)ne0)` is given by

A

`(d^(2)y)/(dx^(2))=(((dx)/(dt))((d^(2)y)/(dt^(2)))-((d^(2)x)/(dt^(2)))((dy)/(dt)))/(((dx)/(dt))^(3))`

B

`(d^(2)y)/(dx^(2))=(((dx)/(dt))((d^(2)y)/(dt^(2)))-((d^(2)x)/(dt^(2)))((dy)/(dt)))/(((dx)/(dt))^(2))`

C

`(d^(2)y)/(dx^(2))=(((d^(2)x)/(dt))((dy)/(dt))-(dx)/(dt)((d^(2)y)/(dt^(2))))/(((dx)/(dt))^(3))`

D

`(d^(2)y)/(dx^(2))=(((d^(2)x)/(dt))((dy)/(dt))-((d^(2)y)/(dt^(2)))((dy)/(dt)))/(((dy)/(dt))^(3))`

Text Solution

Verified by Experts

The correct Answer is:
A

`(dy)/(dx)=(dy//dt)/(dx//dt)`
`(d^(2)y)/(dx^(2))=(d)/(dx)((dy//dt)/(dx//dt))`
`=(((dx)/(dt))(d)/(dx)((dy)/(dt))-((dt)/(dt))(d)/(dx)((dx)/(dt)))/(((dx)/(dt))^(2))`
`=(((dx)/(dt))(d)/(dt)((dy)/(dt))(dt)/(dx)-((dy)/(dt))(d)/(dt)((dx)/(dt))(dt)/(dx))/(((dx)/(dt))^(2))`
`=(((dx)/(dt))(d^(2)y)/(dt^(2))-((dy)/(dt))(d^(2)x)/(dt^(2)))/(((dx)/(dt))^(3))`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

The second derivative of a sin^(3)t w.r.t. a cos^(3)t at t=(pi)/(4) is -

Find the seconds derivatives of each of the following functions w.r.t.x: cotx

Find the derivative of the following functions w.r.t.x: cos (In x)

Find the seconds derivatives of each of the following functions w.r.t.x: tan^-1x

Find the derivative of the following functions w.r.t.x: (tanx)^(x)

Find the seconds derivatives of each of the following functions w.r.t.x: x^5-6x

If f(x) = |x-a| phi (x) , where phi(x) is continuous function, then

Find the seconds derivatives of each of the following functions w.r.t.x: log(x^2-4)

A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is " (dy)/(dx)=(1)/(2) ?

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -