Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

A

3

B

4

C

5

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

`sinx+siny=1`
`rArr" "cosx+cosy y'=0`
`rArr" "-sinx+cosy y''+(y')(-siny)=0`
`rArr" "y''=(y'siny+sinx)/(cosy)`
`=((-(cosx)/(cosy))^(2)siny+sinx)/(cosy)`
`=(sinxcos^(2)y+cos^(2)xsiny)/(cos^(3)y)`
Putting `sin x=t, sin y=1-t`, we get
`y''=(t^(-3//2)(1-t+t^(2)))/((2-t)^(3//2))`
`rArr" "alpha=(3)/(2)`
`rArr" "2alpha=3`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sinx)^(2tanx)

The'value of lim_(xrarr0) 1/xsin^-1((2x)/(1+x^2)) is

Evaluate lim_(xrarr0) tan(2x )/x

lim_(xrarr0)[(In cosx)/((1+x^2)^(1/4)-1))] is equal to

The value of lim_(xrarr0)(1-cos(x/3))/x^2'

Evaluate: lim_(xrarr0)(e^(x^2)-cosx)/x^2

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Evaluate: lim_(xrarr0)(sin(x^2+4x))/(x^3-5x^2+2x)

If lim_(xrarr0)(1+ax+bx^2)^(2//x) = e^3 then

Evaluate: lim_(xrarr0)(sqrt(1+x+x^2)-1)/x