Home
Class 12
MATHS
If y=e^(-x) cos x and yn+kny=0 where yn=...

If `y=e^(-x) cos x` and `y_n+k_ny=0` where `yn=(d^ny)/(dx^n)` and `k_n` are constant `n in N` then

A

`k_(4)=4`

B

`k_(8)=-16`

C

`k_(12)=20`

D

`k_(16)=-24`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`y=e^(-x)cosx`
`therefore" "y_(1)=-e^(-x)cosx-e^(-x)sinx`
`=-sqrt2e^(-x)cos(x-(pi)/(4))`
Similarly, we get
`y_(2)=(-sqrt2)^(2)e^(-x)cos(x-(pi)/(2))`
`y_(3)=(-sqrt2)^(3)e^(-x)cos(x-(3pi)/(4))`
`y_(4)=(-sqrt2)^(4)e^(-x)cos(x-pi)=-4e^(-x)cosx`
`rArr" "y_(4)+4y=0`
`rArr" "k_(4)=4`
Differentiating it again four times, we get
`y_(8)+4y_(4)=0`
`rArr" "y_(8)-16y=0 rArr k_(8)=-16`
`y_(12)+4y_(8)=0 rArr y_(12)+64y=0 rArr k_(12)=64`
Similarly `k_(16)=-256`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If y=e^(-x)cosxa n dy_n+k_n y=0,w h e r ey_n=(d^n y)/(dx^n)a n dk_n are constants AAn in N , then (a) k_4=4 (b) k_8=-16 (c) k_(12)=20 (d) k_(16)=-24

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is

Let A_(r) be the area of the region bounded between the curves y^(2)=(e^(-kr))x("where "k gt0,r in N)" and the line "y=mx ("where "m ne 0) , k and m are some constants lim_(n to oo)Sigma_(i=1)^(n)A_(i)=(1)/(48(e^(2k)-1)) then the value of m is

If the arithmetic mean of x and y is (x^n+y^n)/((x^(n-1)+y^(n-1))) ,then the value of n is

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to (a) n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If y=a x^(n)+b x^(-n) ,then x^2(d^2y)/(dx^2) is equal to

If the arithmetic mean of x and y be (x^(n+1)+ y^(n+1))/(x^(n) + y^(n)) , then find n.

If (x+y)^(m+n)=x^(m)y^(n) , then the value of (dy)/(dx) is -

If y=x^(n-1)logx , Prove that, x^2(d^2y)/(dx^2)+(3-2n)xdy/dx+(n-1)^2y=0

If y=Acosnt+Bsin nt(A,B,n are constants), show that (d^2x)/(dx^2)+n^2x=0 .