Home
Class 12
MATHS
If y = y(x) and it follows the relation ...

If `y = y(x)` and it follows the relation `e^(xy) + y cos x = 2`, then find (i) `y'(0)` and (ii) `y"(0)`.

A

`y'(0)=-1`

B

`y''(0)=2`

C

`y'(0)=3//2`

D

`y''(0)=-2`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`e(xy)+ycosx=2" (1)"`
Putting x = 0, we get
`e^(0)+y cos x=2`
`therefore" "y=1`
Differentiating (1) w.r.t. x, we get
`e^(xy)(x(dy)/(dx)+y)-ysinx+cosx(dy)/(dx)=0`
`therefore" "(xe^(xy)+cosx)(dy)/(dx)=y(sinx-e^(xy))" (2)"`
`therefore" "(dy)/(dx)=(ysinx-ye^(xy))/(xe^(xy)+cosx)`
`therefore" "(dy)/(dx):|_("(0,1)")=(1+sin0-1e^(0))/(0+cos0)`
`=-1`
Differentiating (2), w.r.t. x, we get
`(xe^(xy)+cosx)(d^(2)y)/(dx^(2))+[e^(xy)+xe^(xy)(x(dy)/(dx)+y)-sinx](dy)/(dx)`
`=(dy)/(dx)(sinx-e^(xy))+y[cosx-e^(xy)(y+x(dy)/(dx))]`
Putting x = 0 and y = 1
`therefore" "(0+1)(d^(2)y)/(dx^(2))+(e^(0))(-1)`
`=(-1)(0-1)+1.(1-1(1))`
`therefore" "(d^(2)y)/(dx^(2))=2`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If y=y(x) and it follows the relation 4x e^(x y)=y+5sin^2x , then y^(prime)(0) is equal to______

If x sin y+y cos x=pi , then the value of y''(0) is -

If y=e^(ax)cos bx , Then find [(d^(2)y)/(dx^(2))]_(x=0)

Solve(cos y + y cos x ) dx + sin (x - x sin y) dy = 0

If y is function of x and log(x+y)=2xy, then find the value of y'(0).

Find (dy)/(dx) in the following : xy+y^(2)= tan x+y .

y = Ax : xy' = y (x ne 0)

(a) If x : y = 3 : 4 , then find the value of the ratio (2x + y) : ( 9x - 2y) . (b) If x : y = 5 : 4 , then find the value of the ratio (x^(2) + xy) : (x^(2) - xy) .

IF y=sin(4sin^-1x) satiesfies the relation (1-x^2)y_2-xy_1+4Ay=0 , then the value of A is -

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0