Home
Class 12
MATHS
Let f(x)=(x^(2)+2)/([x]),1 le x le3, whe...

Let `f(x)=(x^(2)+2)/([x]),1 le x le3`, where [.] is the greatest integer function. Then the least value of f(x) is

A

2

B

3

C

`3//2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)={{:(x^(2)+2",",1lexlt2),((x^(2)+2)/(2)",",2lexlt3),((x^(2)+2)/(3),x=3):}`
`therefore" Least value of f(x) in " [1,2]" is "3`
`" Least value of f(x) in "[2,3]" is "3`
`f(3)=(11)/(3)`
`therefore" Least value of f(x) is 3"`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={1+|x|,x<-1 [x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x) =cos [pi^(2)]x+ cos [-pi^(2)] x, where [x] denots the greatest integer function, then the value of f((pi)/(2)) is-

If f : R to [-1, 1] , where f(x)=sin(pi/2[x]) (where [.] denotes the greatest integer function), then the range of f(x) is

Draw the graph of the function f(x) = x-|x^2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

Let f(x) = [x^3 - 3] where [.] denotes the greatest integer function Then the number of points in the interval ( 1, 2) where the function is discontinuous, is

If f(x)={(x[x], 0lexlt2),((x-1)[x], 2lexle3'):} , where [.] denotes the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is