Home
Class 12
MATHS
Slope of tangent to the curve y=2e^(x)si...

Slope of tangent to the curve `y=2e^(x)sin((pi)/(4)-(x)/(2))cos((pi)/(4)-(x)/(2))`, where `0le xle2pi` is minimum at x =

A

0

B

`pi`

C

`2pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

The slope of the tangent to the curve
`y=2e^(x)sin((pi)/(4)-(x)/(2))cos((pi)/(4)-(x)/(2))=e^(x)cosx`
`S=(dy)/(dx)=e^(x)(-sinx+cosx)`
Now, `(dS)/(dx)=e^(x)(-sinx+cosx-cosx-sinx)`
`=-2e^(x)sinx`
`(dS)/(dx)=0 rArr -2e^(x)sin x=0`
`rArr" "x=0,pi,2pi(because 0le xle 2pi)`
Value of S at x = 0 is 1 , value of S at `x=pi` is `-e^(x)`
Value of S at `x=2pi` is `e^(2pi)`
`therefore" S is minimum at "x=pi`.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)sin^(4).(x)/(2)cos^(5).(x)/(2)dx=0

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x

The slope of the tangent at (x, y) to a curve passing through (1, (pi)/(4) ) is given by (y)/(x) - cos^(2) ((y)/(x)) , then the equation of the curve is-

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

The maximum value of [sin (x+(pi)/(6))+cos (x+(pi)/(6))] in the interval [0, (pi)/(2)] is attained at x=

cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)

Show that, int_(0)^((pi)/(2))(sin2x dx)/(sin^(4)x+cos^(4)x)=(pi)/(2)

Points on the curve f(x)=(x)/(1-x^(2)) , where the tangent is inclined at an angle of (pi)/(4) to x-axis, are

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x