Home
Class 12
MATHS
The value of a for which all extremum of...

The value of a for which all extremum of function `f(x)=x^(3)+3ax^(2)+3(a^(2)-1)x+1`, lie in the interval (2, 4) is

A

`(3,4)`

B

`(-1,3)`

C

`(-3, -1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=x^(3)-3ax^(2)+3(a^(2)-1)x+1`
`f'(x)=3x^(2)-6ax+3(a^(2)-1)`
`=3(x-(a+1))(x-(a-1))`
so `f'(x)=0 rArr x=a+1 or a-1`
`therefore" "a+1 in (-2, 4)" if " a in (-3,3)`
and `a-1 in (-2,4)" if "a in (-1,5)`
`therefore" "a in (-1,3)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

The function f(x)= 2x^(3)-15x^(2) +36x + 1 is increasing in the interval-

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

The function f(x)=2log(x-2)-x^2+4x+1 increases in the interval

The value of a for which the function (a+2)x^(3) - 3ax^(2) + 9ax -1 decreases monotonically throughout for all real values of x , are-

The value of a for which the function f(x)=asinx+1/3sin3x has an extremum at x=pi/3 is

Discuss the extremum of f(x)=x(x^2-4)^(-1/3)

Verify Rolle's theorem for the functions f(x)=x^(3)-4x in the interval -2 le x le 2

The least value of the function f(x)= cos^(-1)x^2 in the interval [-1/sqrt2,1/sqrt2] is

Find the values of parameter a for which the function. y=ax^(3)+3x^(2)+(2a+1)x+1000 is strictly decreasing for all real values of x.

For the function f(x) = 2x^3-8x^2+10x+5 , find the interval (s) in which f(x) is increasing