Home
Class 12
MATHS
If the function f(x)=ax e^(-bx) has a lo...

If the function `f(x)=ax e^(-bx)` has a local maximum at the point (2,10), then

A

a = 5e

B

a = 5

C

b = 1

D

b = 1/2

Text Solution

Verified by Experts

The correct Answer is:
A, D

`f(x)=ax e^(-bx)` hs a local maximum at the point (2, 10)
`therefore" "f(2)=10,2ae^(-2b)=10`
`rArr" "ae^(-2b)=5" (i)"`
`f'(x)=a[e^(-bx)-bx e^(-bx)]`
`f'(2)=0`
`rArr" "a(e^(-2b)-2b^(-2b))=0`
`rArr" "ae^(-2b)(1-2b)=0`
`rArr" "b=1//2`
From (i) if b = 1/2, then
a = 5e or a = 0 (not possible)
`therefore a=5e and b=1//2`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=4x-x^(2)-3 has a maximum value at-

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

The function f(x)=x/2+2/x has a local minimum at (a) x=2 (b) x=-2 (c) x=0 (d) x=1

Let x=c be a point in the domain of definition of a differentiable function , then f(x) will have a local maximum at x=c when -

Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be: f(x) = x^(2)

The function f(x)=4x^(3)+ax^(2)+bx+2 has an extremum at (2,-2) , find the values of a and b . Show that , the function possesses a minimum value at the extreme point.

Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be: f(x) = 6x^(2) +9x+15

Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be: g(x) =(x^(2)+2)

If a differentiable function f(x) attains a local extremum at x=a , then -

Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be: g(x) = x^(3)-3x