Home
Class 12
MATHS
If lim(xrarra) f(x)=lim(xrarra) [f(x)] (...

If `lim_(xrarra) f(x)=lim_(xrarra) [f(x)]` ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

A

`underset(xrarra)(lim)` f(x) is an integer

B

`underset(xrarra)(lim)` f(x) is non-integer

C

f(x) has local maximum at x = a

D

f(x) has local minimum at x = a

Text Solution

Verified by Experts

The correct Answer is:
A, D

We have `underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)]`.
The can occur only when `underset(xrarra)(lim)f(x)` is an integer.
`rArr" "f(a^(+))gt f(a) and f(a^(-))gt f(a)`
`rArr" "x = a` must be point of local minima.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Is the function defined by f(x)= |x| , a continuous function?

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

The function f(x) = [x]^2-[x^2] (where [.] denotes the greatest integer function ) is discontinuous at

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

If f(x)=[x], where [.] denotes greatest integer function. Then check the continuity on [1,2]