Home
Class 12
MATHS
If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",...

If `f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):}` and `g'(x)=f(x), x in [1,3]`, then```

A

g(x) has no local maxima

B

g(x) has no local minima

C

g(x) has local maxima at `x=1+ln2` and local minima at x = e

D

g(x) has local minima at `x=1+ln2` and local maxima at x = e

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=g'(x)={{:(2-e^(x-1)",",1ltxle2),(x-2",",2ltxle3):}`
and `x-e=0 rArr x=e`
Graph of f(x) is as shown in the following figure.

From the figure, derivative changes sign from '+' to '-' at `x=1 +ln2` and from `'-'" to "'+'" at "x=e`
Hence `x=1ln2` is point of maxima and `x=e` is point of minima
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(3x^2+12x-1,-1lexle2),(37-x,2ltxle3):}

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxle3),(x^(2)+b+1,,3ltxle4):} underset(xrarr2)(lim)(f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

Let f(x)={{:(1-x,0lexle1,),(0,1lexle2,),((2-x)^(2),2lexle3,):} , then 6int_(0)^(3)f(x)dx is equal to-

If f(x)={(x[x], 0lexlt2),((x-1)[x],2lexle3):} , then f(x) is

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

Find the domain and range of h(x) = g(f(x), where f(x) = {([x], -2lexle-1),(|x| + 1, -1 lt x le 2) :} and g(x) = {([x], -pi le x le 0), (sin x, 0 lt x le pi):}

Two functions are defined as under, f(x)={(x+1, x le1),(2x+1, 1ltxle2):} g(x)={(x^2, -1lexlt2),(x+2, 2lexle3):} Find fog and gof

If f(x)={(-x-pi/2, x le -pi/2),(-cosx, -pi/2ltxle0),(x-1, 0ltcle1),(lnx, x gt 1):}

f(x)={(x-1, -1lexlt0),(x^2, 0ltxle1):} and g(x)=sin x. Then find h(x)=f(|g(x)|)+|f(g(x))|

Consider two functions y=f(x) and y=g(x) defined as f(x)= {[a x^2 +b, 0lexle1],[ bx + 2b, 1ltxle3],[(a-1)x + 2c - 3 , 3ltxle4]} And g(x)={[c x + d , 0le x le 2],[a x+3-c ,2ltxlt3],[x^2+b+1,3lexle4]} Let f be differentiable at x=1a n dg(x) be continuous at x=3. If the roots of the quadratic equation x^2+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible value of k will be a) k in (-1,0) b). k in (oo,0) c). k in (1,5) d). k in (-1,1)