Home
Class 12
MATHS
If g(x)=max(y^(2)-xy)(0le yle1), then th...

If `g(x)=max(y^(2)-xy)(0le yle1)`, then the minimum value of g(x) (for real x) is

A

`(1)/(4)`

B

`3-sqrt3`

C

`3+sqrt8`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`y^(2)-xy=(y-(x)/(2))^(2)-(x^(2))/(4) rArr y^(2)-xy` is decreasing for `yle (x)/(2)` and increasing for `yge(x)/(2)`
Thus the largest value of `y^(2)-xy` must be at `y=0,(x)/(2)` or 1.
The values are `0,(x^(2))/(4),1-x` for `x in (0,1)`
And for `x in (0,1)g(x)=max((x^(2))/(4),1-x)`
Also `x^(2)+4x=4=0 rArr x = -2 pm sqrt8`
`rArr" "g(x)=1-x " for "x le sqrt8-2 and (x^(2))/(4)` for `x ge sqrt8-2`
`rArr" g(x) is minimum at "x=sqrt8-2` and minimum value is `3-sqrt8`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 1, then the minimum value of (x^(2) +x+1) is-

If x is real number, then the minimum value of x^2+x+1 is

If x>0,y>0 and xy= 100, find the minimum value of (x+y)

If x is real, the minimum value of x^2 - 10x + 28 is

What is the minimum value of 2x+3y, when xy=6?

If xgt0,ygt0 and x+y=1, then find the minimum value of x log x + y log y.

IF x in N and 0le(2x-5)/2le7 , then the maximum and minimum values of x are-

If 2x+3y=4 , find the maximum or minimum value of xy.

If x^(2)+y^(2)=1 , the minimum and maximum values of x+y are

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is