Home
Class 12
MATHS
Let f be a continuous and differentiable...

Let f be a continuous and differentiable function in `(x_(1),x_(2))`. If `f(x).f'(x)ge x sqrt(1-(f(x))^(4))` and `lim_(xrarrx_(1))(f(x))^(2)=1 and lim_(xrarrx) )(f(x))^(2)=(1)/(2)`, then minimum value of `(x_(1)^(2)-x_(2)^(2))` is

A

`(pi)/(6)`

B

`(2pi)/(3)`

C

`(pi)/(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(2f(x).f'(x))/(sqrt(1-(f(x))^(4)))-2xge0`
`rArr" "(d)/(dx)(sin^(-1)(f(x))^(2)-x^(2))ge0`
Then `g(x)=sin^(-1)((f(x))^(2))-x^(2)` is a non-decreasing function.
`rArr" "underset(xrarrx_(1)^(+))(lim)g(x)le underset(xrarrx_(2)^(-))(lim)g(x)`
`rArr" "(pi)/(2)-x_(1)^(2)le(pi)/(6_-x_(2)^(2)`
`rArr" "x_(1)^(2)-x_(2)^(2)ge(pi)/(3)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked comprehension Type|2 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(xrarr2)(f(4)-f(x^2))/(x-2) equals

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

The minimum value of the function f(x)=2|x-1|+|x-2| is

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

The minimum value of the function f(x)=2|x-1|+|x-2| is -

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is