Home
Class 12
MATHS
lim(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3)...

`lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]` is equal to

A

`(3)/(8)`

B

`(1)/(4)`

C

`(1)/(8)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(nrarroo)(lim)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]`
`" "=underset(nrarroo)(lim)[(n^(2))/((n+0)^(3))+(n^(2))/((n+2)^(3))+(n^(2))/((n+2)^(3))+...+(n^(2))/((n+n)^(3))]`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(n^(2))/((n+r)^(3))`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(1)/(n)(1)/((1+(r)/(n)))`
`" "=int_(0)^(1)(dx)/((1+x^(3)))=[-(1)/(2(1+x)^(2))]_(0)^(1)`
`" "=-(1)/(2)((1)/(4)-1)=(3)/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+(3^(2))/(n^(3)+3^(3))+...+(1)/(2n)]

lim_(nrarroo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+...+(1)/(n)]

lim_(nrarroo) [(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)]

lim_(nrarroo) [(1)/(n)+(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+...+(sqrt(n^(2)-(n-1)^(2)))/(n^(2))]

lim_(nrarroo) [(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

lim_(nrarroo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+...+(n)/(n^(2)+n^(2))]

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=