Home
Class 12
MATHS
The value of lim(n rarroo) sum(r=1)^(n)(...

The value of `lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) ` is equal to

A

`2ln(sqrt2-1)`

B

`4 ln (sqrt2-1)`

C

`4 ln (sqrt2+1)`

D

`ln sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C

`S=underset(nrarroo)(lim)sum_(r=1)^(n)(pi)/(n).(1)/(sin{(pi)/(4)+(pir)/(4n)})`
`" "=pi int_(0)^(1)(dx)/(sin((pi)/(4)x+(pi)/(4)))=4log_(e)(sqrt2-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

The value of lim_(nrarrprop) ((n+1)(2n+1))/n^2 is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

The value of Lim_(n to oo) n!/((n+1)!-n!)

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to