Home
Class 12
MATHS
lim(nrarroo) sum(k=1)^(n)(k^(1//a{n^(a-(...

`lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1))` is equal to

A

1

B

2

C

43467

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(nrarroo)(lim)sum_(k=1)^(n)(k^(1//a){n^(a-(1)/(a))+k^(a-(1)/(a))})/(n^(a+1))`
`" "=underset(nrarroo)(lim)sum_(k=1)^(n)(1)/(n).{((k)/(n))^(1//a)+((k)/(n))^(a)}`
`" "=int_(0)^(1)(x^(1//a)+x^(a))dx`
`" "={(x^((1//a)+1))/((1)/(a)+1)+(x^(a+1))/(a+1)}_(0)^(1)`
`" "=(a)/(a+1)+(1)/(a+1)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^ook(1-1/n)^(k-1) =?

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(nrarroo) [(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)]

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

lim_(nrarroo) [(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]