Home
Class 12
MATHS
If int0^3 (3ax^2+2bx+c)dx=int1^3 (3ax^2+...

If `int_0^3 (3ax^2+2bx+c)dx=int_1^3 (3ax^2+2bx+c)dx` where `a,b,c` are constants then `a+b+c=`

A

`a+b+c=3`

B

`a+b+c=1`

C

`a+b+c=0`

D

`a+b+c=2`

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(0)^(3)(3ax^(2)+2bx+c)dx=int_(1)^(3)(3ax^(2)+2bx+c)dx`
`rArr" "int_(0)^(1)(3ax^(2)+2bx+c)dx+int_(1)^(3)(3ax^(2)+2bx+c)dx`
`" "=int_(1)^(3)(3ax^(2)+2bx+c)`
`rArr" "int_(0)^(1)(3ax^(2)+2bx+c)dx=0`
`rArr" "[(3ax^(3))/(3)+(2bx^(2))/(2)+cx]_(0)^(1)=0`
`rArr" "a+b+c=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int (ax^2+bx+c)dx =

The value of int_(-3)^3(ax^5+bx^3+cx+k)dx where a,b, c, k are constant depends only on

The value of int_(-3)^(3)(ax^(5)+bx^(3)+cx+k)dx , where a, b, c, k are constants, depends only on

If the equaiton ax^2+bx+c=0 where a,b,c in R have non-real roots then-

If int x^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d ,then-

If the equations x^2 + 2x + 3 = 0 and ax^2 + bx + + c = 0 have common root, then a : b : c is _____

If the equation x^2+2x+3=0 and ax^2+bx+c=0 , a, b, c in R, have a common root, then a:b:c is

If the equation x^(2)+2x+3=0andax^(2)+bx+c=0 , a,b,c in RR, have a cmmon root , then a : b : c is -