Home
Class 12
MATHS
Let f(x)=lim( n to oo)(cosx)/(1+(tan^(-1...

Let `f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n))`. Then the value of `int_(o)^(oo)f(x)dx` is equal to

A

`cos (tan 1)`

B

`sin(tan1)`

C

`tan(tan1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(tan1)f(x)dx+int_(tan1)^(oo)f(x)dx`
`=int_(0)^(tan1)cosxdx+0`
`=sin(tan1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

The value of int_(0)^(oo) (x dx)/((1+x)(1+x^(2))) is equal to -

Let f(x)=lim_(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5) . Then the set of values of x for which f(x)=0 is

If f(x)=cosx-cos^(2)x+cos^(3)x-…oo , then the value of int f(x) dx is equal to -

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let for all xgt0,f(x)=lim_(nto oo)n(x^((1)/(n))-1) , then

int_(-oo)^(oo)(1)/(1+x^2) dx

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is