Home
Class 12
MATHS
The value of difinite integral int(0)^(1...

The value of difinite integral `int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1)))` equals

A

`sqrt2-1`

B

`tan.(pi)/(12)`

C

`tan.(5pi)/(12)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(0)^(1)(dx)/((x+1)sqrt((x+1)(3(x+1)-2)))`
Put `x+1=(1)/(t)`
`therefore" "I=int_(1)^(1//2)(dt)/(sqrt(3-2t))=sqrt2-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x^(2)))

int_(0)^(1)(dx)/(sqrt(x+1)-sqrt(x))

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_0^1e^(x^2)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x)-sqrtx)

Evaluate the definite integrals int_(0)^(1)(dx)/(1+x^(2))

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

The value of integral int_(-1)^(1)(|x+2|)/(x+2)dx is