Home
Class 12
MATHS
If f(x) is continuous and int(0)^(9)f(x)...

If f(x) is continuous and `int_(0)^(9)f(x)dx=4`, then the value of the integral `int_(0)^(3)x.f(x^(2))dx` is

A

2

B

18

C

16

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(0)^(3)x.f(x^(2))dx`
Put `x^(2)=t`
`rArr" "2x.dx=dt`
`rArr" "I=(1)/(2)int_(0)^(9)f(t)dt=(1)/(2).4=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the value of the integral, int_(0)^(2a)(f(x))/(f(x)+f(2a-x))dx is equal to a.

int_(0)^(2a)f(x)dx is equal to -

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2) . Then the value of the integral int_(0)^(1) f(x)g(x) dx is equal to -

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4){3-f(x)}dx=7 then the value of int_(-1)^(2)f(x)dx is

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(agt0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If f(x)=|x-1| , then the value of int_(0)^(2)f(x) dx is -

f: R to R is a continuous and f(x)=int_(0)^(x)f(t)dt then f(log_(e)5)= ?

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is