Home
Class 12
MATHS
lim(trarr0) int(0)^(2pi)(|sin(x+t)-sinx|...

`lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx` equals

A

2

B

4

C

43469

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(trarr0)(lim)int_(0)^(2pi)|(sin(x+t)-sinx)/(t)|dx`
`=int_(0)^(2pi)(underset(trarr0)(lim)|(2cos(x+(t)/(2))sin(t)/(2))/(t)|)dt`
`=int_(0)^(2pi)|cosx|dx=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)sqrt(1+sinx)dx

int_(0)^((pi)/(4))(dx)/(1+sinx)

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

Evaluate int_(0)^(2pi)|sinx|dx .

int_(0)^((pi)/(2))(sinx)/(sinx+cosx)dx

int_(0)^(pi)(dx)/(3+2sinx+cosx)

The value of the integral int_(0)^(2pi)(sin x+|sin x|)dx is equal to -

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to