Home
Class 12
MATHS
The value of I=int(-1)^(1)(1+x)^(1//2)(1...

The value of `I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx` is

A

`pi`

B

`(pi)/(2)`

C

`2pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx`
`rArr" "I=int_(-1)^(1)(1-x)^(1//2)(1+x)^(3//2)dx`
`rArr" "2I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(1//2)[(1-x)+(1+1)]dx`
`rArr" "2I=2int_(-1)^(1)sqrt(1-x^(2))dx`
`rArr" "I=2int_(0)^(1)sqrt(1-x^(2))dx`
`=(pi)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of int_(0)^(1)(dx)/(x^(2)+1) is-

The value of int_(-1)^(1) |2x + 1|dx is

The value of int_(-1)^(1)x|x|dx is -

int_(-1)^(1)(2x+3)/(4)dx

The value of int_(1)^(2)(x+1)/(x^(3))dx is-

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

The value of int_(2)^(3)(dx)/(2x+1) is-

The value of int_(0)^(1) tan^(-1)((1)/(x^(2)-x+1))dx is equal to -

int_(-1)^(1)(x^(3)dx)/(x^(2)+1)