Home
Class 12
MATHS
The value of I=int(0)^(pi)x(sin^(2)(sinx...

The value of `I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx` is

A

`pi^(2)`

B

`(pi^(2))/(2)`

C

`(pi^(2))/(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx" (1)"`
`therefore" "I=int_(0)^(pi)(pi-x)(sin^(2)(sinx)+cos^(2)(cosx))dx" (2)"`
Adding (1) and (2)
`rArr" "2I=2piint_(0)^((pi)/(2))(sin^(2)(sinx)+cos^(2)(cosx))dx`
`rArr" "I=piint_(0)^((pi)/(2))(sin^(2)(sinx)+cos^(2)(cosx))dx" (3)"`
`rArr" "I=piint_(0)^((pi)/(2))(Sin^(2)(cosx)+cos^(2)(sinx))dx" (4)"`
Adding (3) and (4)
`rArr" "2I=piint_(0)^((pi)/(2))2dxrArrI=(pi^(2))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi) e^(sin^(2)x) cos^(3)x dx is equal to -

The value of int_(0)^(pi)|cosx|dx is

Find the value of int_(-2)^(2)(sin^(-1)(sinx)+cos^(-1)(cosx))/((1+x^(2))(1+[(x^(2))/5]))dx , where [.] represents the greatest integer function.

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(0)^(pi) (x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx is equal to -

Choose the correct answer The value of int_(0)^(pi/2)log((4+3sinx)/(4+3cosx))dx is

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

The value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx is equal to -

int_(0)^(pi)(dx)/(3+2sinx+cosx)