Home
Class 12
MATHS
int0^a log (cota+ tanx)dx where a in (0,...

`int_0^a log (cota+ tanx)dx` where `a in (0,pi/2)` is

A

(a) `a ln (sina)`

B

(b) `-a ln (sina)`

C

(c) `-a ln (cos a)`

D

(d) none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(a)ln(cot a +tanx)dx`
`=int_(0)^(a)ln((cos(a0x))/(sina cosx))dx" (1)"`
`therefore" "I=int_(0)^(a)ln((cosx)/(sina cos(a-x)))dx" (2)"` Adding (1) and (2) we get `2I=int_(0)^(a)ln((1)/(sin^(2)a))dx`
`=-2int_(1)^(a)ln(sina)dx`
`=-2aln(sina)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int _(0)^(pi/2) log(cotx)dx

Find I=int_0^pi ln(1+cosx)dx

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha

int_(0)^((pi)/(2))log(tanx)dx=0

Solve tanx >cotx , where x in [0,2pi]dot

The value of I = int_0^(pi/4) (tan^(n+1)x)dx + 1/2 int_0^(pi/2) tan^(n-1)(x/2) dx is equal to

int_(0)^(1)log((1)/(x)-1)dx

int_(0)^((pi)/(2))y^(2)dx where y = sin x

If I=int_0^(pi/4)log(1+tanx) dx then I is equal to

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .