Home
Class 12
MATHS
IF f(x+f(y))=f(x)+y AA x, y in R and f(0...

IF `f(x+f(y))=f(x)+y AA x, y in R and f(0)=1`, then `int_(0)^(10)f(10-x)dx` is equal to

A

1

B

10

C

`int_(0)^(1)f(x)dx`

D

`10int_(0)^(1)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
D

Put y = 0 `rArrf(x+1)=f(x)`
Thus f(x) is periodic with period '1'
`therefore" "int_(0)^(10)f(10-x)dx`
`=int_(0)^(10)f(10-(10-x))dx`
`=int_(0)^(10)f(x)dx`
`=int_(0)^(10)f(x)dx`
`=10int_(0)^(1)f(x)dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=f(a-x) then int_(0)^(a)xf(x)dx is equal to

If f(2a-x)=-f(x) then int_(0)^(2a)f(x)dx is equal to-

If |f(x)-f(y)|le2|x-y|^((3)/(2)) AAx,yinR and f(0)=1 then value of int_(0)^(1)f^2(x)dx is equal to (a) 1 (b) 2 (c) sqrt2 (d) 4

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot

Let a,b, c in R. " If " f(x)=ax^(2)+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy, AA x,y in R, " then " sum_(n=1)^(10) f(n) is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

If f is a real valued difrerentiable function satisfying | f (x) - f (y) | le (x -y) ^(2) for all, x,y in RR and f(0) =0, then f(1) is equal to-

if f(x) is a function such that f(x+k)=f(x) for K in I^+ and I=int_0^k f(x)dx then I=int_0^(k^(2-k))f(x)dx is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)