Home
Class 12
MATHS
The value of int(0)^(oo)(logx)/(a^(2)+x^...

The value of `int_(0)^(oo)(logx)/(a^(2)+x^(2))dx` is

A

`(2piloga)/(a)`

B

`(pi log a)/(2a)`

C

`pi loga`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(oo)(logx)/(a^(2)+x^(2))dx`
Put `x=(a^(2))/(y),dx=-(a^(2))/(y^(2))dy`
`therefore" "I=int_(oo)^(0)(log((a^(2))/(y)))/(a^(2)+(a^(4))/(y^(2)))((-a^(2))/(y^(2)))dy`
`" "=int_(oo)^(0)((loga^(2)-logy))/(a^(2)+y^(2))(-dy)`
`" "=log(a^(2))int_(0)^(oo)(dy)/(a^(2)+y^(2))-int_(0)^(oo)(logy)/(a^(2)+y^(2))dy`
`" "log(a^(2))(1)/(a)(tan^(-1)((y)/(a)))_(0)^(oo)-I`
`rArr" "2I=(2loga)/(a).(pi)/(2)`
`rArr" "I=(piloga)/(2a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo) (x dx)/((1+x)(1+x^(2))) is equal to -

The value of int_(0)^(1)(dx)/(x^(2)+1) is-

The value of int_(0)^(pi) (x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx is equal to -

The value of int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to -

int_(1)^(e)(logx)^(2)dx

The value of int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to -

The value of int_0^oo (dx)/(1+x^4) is

Find the value of int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) equals to

int_(1)^(e)(1+logx)/(x)dx

The value of int_(0)^(1.5)[x^(2)]dx is -