Home
Class 12
MATHS
Let I(1)=int(0)^(oo)(x^(2)sqrtx)/((1+x)^...

Let `I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx`, then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx`
Let `x=(1)/(t)`
`rArr" "I_(1)=int_(oo)^(0)((1)/(t^(2)sqrtt))/((1+(1)/(t))^(6))(-(1)/(t^(2))dt)`
`rArr" "I_(1)=int_(0)^(oo)(tsqrtt)/((1+t)^(6))dt=I_(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2)(x^(2)dx)/(sqrt(1+x^(2)))

int_(0)^(1)xe^(-x^(2))dx

int_(0)^(1)x^(2)e^(-x)dx

int_(0)^(1)2e^(x)dx

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)/x dx

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

int_(-a)^(a)(xe^(x^(4)))/(1+x^(2))dx=0

int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))

int_(0)^(1)xlog(1+2x)dx

int_(-oo)^(oo)(1)/(1+x^2) dx