Home
Class 12
MATHS
If a, b and c are real numbers, then the...

If a, b and c are real numbers, then the value of `lim_(trarr0) ((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx)` equals

A

abc

B

`(ab)/(c)`

C

`(bc)/(a)`

D

`(ca)/(b)`

Text Solution

Verified by Experts

The correct Answer is:
A

`L=underset(trarr0)(lim)log_(e)((1)/(t)int_(0)^(t)(1+a sinbx)^(c//x)dx)((0)/(0)"form")`
`=loe_(e)(underset(trarr0)(lim)(int_(0)^(t)(1+a sin bx)^(c//x)dx)/(t))" (Using L' Hopital Rule)"`
`=loe_(e)(underset(trarr0)(lim)((1+a sin bt)^(c//x)/(1))`
`=log_(e)[(underset(trarr0)(lim)(1+asin bt)^((1)/(a sin bt)))^((ac sin bt)/(1))]`
`=log_(e)e^(abc)`
`=abc`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

If a,b,c are positive real number, then the least value of (a+b+c)(1/a+1/b+1/c) is

The value of lim_(xrarr0)frac(1)(x^3) int_0^(x) (t log(1+t))/(t^4+4) dt is

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

The value of lim_(xto0)(1)/(x)[int_y^ae^(sin^2t)dt-int_(x+y)^ae^(sin^2t)dt] is equal to

The value of lim_( x to 0) (int_(0)^(x^(2)) cos(t^(2))dt)/(x sinx) is

int_(0)^(1) sqrt((1-x)/(1+x))dx is equal to -

Find the value of int_(0)^(1){(sin^(-1)x)//x}dx .

If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -