Home
Class 12
MATHS
If f(x)=int(2)^(x)(dt)/(1+t^(4)), then...

If `f(x)=int_(2)^(x)(dt)/(1+t^(4))`, then

A

`f(3)lt(1)/(17)`

B

`f(3)gt(1)/(17)`

C

`f(3)=(1)/(17)`

D

`f(3)gt1`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)=int_(2)^(x)(dt)/(1+t^(4)).`
`rArr" "f'(x)=(1)/(1+x^(4))`
In [2,3], apply mean value theorem to f(x)
`therefore" "(f(3)-f(2))/(3-2)=f'(x),` where `c in (2,3)`
`therefore" "f(3)-0=(1)/(1+c^(4))`
Now 2 lt c lt 3
`17 lt 1+c^(4)lt84`
`rArr" "(1)/(17)gt(1)/(1+c^(4))gt(1)/(82)`
`rArr" "(1)/(82)ltf(3)lt(1)/(17)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Which of the following relations is satisfied by the function f(x)=int_(1)^(x)(dt)/(t) ?

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

If f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt , where xgt0 , find the value of f(x)+f((1)/(x)) and hence show that, f(e)+f((1)/(e))=(1)/(2) .

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then the interval in which f(x) is increasing, is-