Home
Class 12
MATHS
If int(0)^(x)f(x)sint dt=" constant, " 0...

If `int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2`, then the value of `f(pi//2)` is

A

3

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(0)^(x)f(x) sin t dt = "constant"`
Differentiate both side w.r.t. x
`f'(x)(1-cosx)+f(x) sin x = 0`
`rArr" "int(f'(x))/(f(x))dx=int(sinx)/(cosx-1)dx`
`rArr" "ln|f(x)|=-2 ln sin.(x)/(2)+lnc`
`rArr" "f(x)=(c)/((sin.(x)/(2))^(2))`
`f(pi)=2rArrc=2`
`rArr" "f((pi)/(2))=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= sin""x/2 ,then the value of f''( pi ) is-

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

If f(x)=cos[pi^2]x+cos[-pi^2]x then the value of f(pi/4)+f(pi/2) is

cos2x - 5 cosx +3 =0 (0 lt x lt 2pi)

The value of the integral sqrt2 int_0^(pi/2) f(sin2x) sinx dx=A (sqrt2/9) int_0^(pi/4) f(cos2x)cosx dx then the value of A is

If f(x)=int_0^x(sint)/t dt ,x >0, then

if int_0^(x^2(1+x))f(t)dt=x then the value of 10f(2) must be

Let f(x)= (1-tanx)/(4x-pi) when 0 le x le (pi)/(2) and x ne (pi)/(4) , if f(x) is continuous at x=(pi)/(4) , then the value of f((pi)/(4)) is -

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval