Home
Class 12
MATHS
lim(xrarr0) (int(0)^(x)(t^(2))/(sqrt(a+t...

`lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0)`. Then the value of a is

A

`1//2`

B

`1//4`

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(xrarr0)(lim)(int_(0)^(x)((t^(2))/(sqrt(a+t))dt))/(x -sin x)`
`" "=underset(xrarr0)(lim)((d)/(dx)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt))/(1-cosx)" (by L' Hopital's Rule)"`
`" "=underset(xrarr0)(lim)(1)/(sqrt(a+x)).(((x)/(2))/(sin.(x)/(2)))^(2).4`
`" "=(1)/(2sqrta).1.4=1 rArr a=4.`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sinx)^(2tanx)

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: If lim_(xrarr0)int_0^(x) (t^2dt)/((x-sinx)sqrt(a+t))=1 , then the value of a is

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

Evaluate lim_(xrarr0)(int_0^(x^2) costdt)/(xsinx)

Evaluate lim_(xrarr0)(x-int_0^(x) cost^2dt)/(x^3-6x)

The value of lim_( x to 0) (int_(0)^(x^(2)) cos(t^(2))dt)/(x sinx) is

The value of lim_(x rarr0)(int_0^(x^2) cost^2dt)/(x sin x) is

The value of lim_(x rarr 0) (int_0^(x^2)sec^2tdt)/(x sinx) is :

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then