Home
Class 12
MATHS
Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then...

Let `f(x)=int_(2)^(x)f(t^(2)-3t+4)dt`. Then

A

f(2) = 0

B

`f(-2)=0`

C

`f'(2)=0`

D

`f'(2)=2`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`f(2)=0`
Also, `f'(x)=f(x^(2)-3x+4)`
`f'(2)=f(2)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = int_2^x f(t^2-3t+2) dt then

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f:RtoR be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt . Then the value of f(log_(e)5) is

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find the value of 9f'(4)

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let g(x) = int_(x)^(2x) f(t) dt where x gt 0 and f be continuous function and 2* f(2x)=f(x) , then

In -4 lt x lt 4 , the function f(x)= int_(-10)^(x) (t^(4)-4)e^(-4t) dt has-

A minimum value of the function f(x) = int_(0)^(x) te^(-t^(2))dt is-

Let f(x)=int_0^xe^t(t-1)(t-2)dt , Then f decreases in the interval