Home
Class 12
MATHS
If int(0)^(x)f(t)dt=e^(x)-ae^(2x)int(0)^...

If `int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt`, then

A

`a=(1)/(3-2e)`

B

`f(x)=e^(x)-2e^(2x)`

C

`a=(1)/(e)`

D

`f(x)=e^(x)-e^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Put `x=0rArr e^(0)-a int_(0)^(1)f(t)e^(-t)dt=0`
`rArr" "int_(0)^(1)f(t)e^(-1)dt=(1)/(a)" (i)"`
`rArr" "int_(0)^(x)f(t)dt=e^(x)-ae^(2x)(1)/(a)=e^(x)-e^(2x)`
Differentiating we get
`rArr" "f(x)=e^(x)-2e^(2x)`
From (i), we get `a=(1)/(3-2e)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If x int_(0)^(x)sin(f(t))dx=(x+2)int_(0)^(1)tsin(f(t))dt , where xgt0 , then show that f'(x)cot f(x)+3/(1+x)=0

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is (a) [0,∞) (b) R (c) (−∞,0] (d) [−1/2,1/2]

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

Let f be a contiuous function on [a,b] . If F(x)=(int_(a)^(x)f(t)dt-int_(x)^(b)f(t)dt)(2x-(a+b)) , then prove that there exist some c epsilon(a,b) such that int_(a)^(c)f(t)dt-int_(c)^(b)f(t)dt=f(c)(a+b-2c)

Let f(x) = int_2^x f(t^2-3t+2) dt then

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(agt0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function