Home
Class 12
MATHS
Consider the function f(x)=int(0)^(x)(5...

Consider the function `f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt`. Which is not true for `int_(0)^(x)f(t)dt` gt?

A

positive for all `x in (0,1)`

B

increasing for all `x in (0,1)`

C

non-monotonic for all `x in (0,1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt.`
`rArr" "f'(x)=5ln(1+x^(2))-10x tan^(-1)x+16 sinx`
`rArr" "f''(x)=2(8 cos x-5 tan^(-1)x)`
`rArr" "f''(x)=-2(8sinx+(5)/(1+x^(2)))lt0AAx in (0,1)`
So, f''(x) is decreasing `AA x in (0,1)`
`rArr" "f''(x)gtf''(1)=2(8cos1-(5pi)/(4))`
`" "gt2(8cos.(pi)/(3)-(5pi)/(4))`
`" "=2(4-(5pi)/(4))gt0`
So, f''(x) is increasing, for `x gt 0 , f'(x)gtf'(0)=0`
So, f(x) is increasing, for `x gt0, f(x) gt f(0)=0`
So, `int_(0)^(x)f(t)` is positive and increasing.
Promotional Banner

Similar Questions

Explore conceptually related problems

A minimum value of the function f(x) = int_(0)^(x) te^(-t^(2))dt is-

The function f(x) =int_0^xsqrt(1-t^4) dt is such that

In -4 lt x lt 4 , the function f(x)= int_(-10)^(x) (t^(4)-4)e^(-4t) dt has-

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_2^x f(t^2-3t+2) dt then

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -