Home
Class 12
MATHS
Let I(n)=int(0)^(1)x^(n)sqrt(1-x^(2))dx....

Let `I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx.` Then `lim_(nrarroo)(I_(n))/(I_(n-2))=`

A

2

B

1

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
B

`I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx=int_(0)^(1)x^(n-1)xsqrt(1-x^(2))dx`
`=-x^(n-1)|((1-x^(2))^(3//2))/(3)|_(0)^(1)+int_(0)^(1)(n-1)x^(n-1)((1-x^(2))^(3//2))/(3)dx`
`=0+(n-1)/(3)int_(0)^(1)x^(n-2)(1-x^(2))sqrt(1-x^(2))dx`
`=(n-1)/(3)I_(n-2)-(n-1)/(3)I_(n)`
`rArr" "3I_(n)+(n-1)I_(n)=(n-1)I_(n-2)`
`rArr" "(I_(n))/(I_(n)-2)=(n-1)/(n+2)`
`rArr" "underset(n rarroo)(lim)(I_(n))/(I_(n-2))=1.`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

Let I_n=int_0^1x^ntan^(-1)xdx." Then prove that "(n+1)I_(n)+(n-1)I_(n-2)=pi/2-1/n"

If I_(n)=int_(0)^(1)(1-x^(5))^(n)dx , then the value of (55)/(8)((I_(10))/(I_(11))) is equal to-

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}